runlinc Intermediate Project 13: Temperature and Humidity Storage (E32W+Python Version)

Temperature and Humidity Data Logging to
Local CSV (runlinc + Python)

Contents

Introduction

Part A: Design the Circuit on runlinc
Part B: Build the Circuit
Temperature and Humidity Data Monitoring and Storage

N W W

Summary 12

Introduction

This project aims to build a real-time temperature and humidity monitoring and
data storage system. This version utilizes a local Python server to write sensor
data into CSV files, enabling users to directly analyze and visualize the data

using Excel.
Problem

In many application scenarios (such as greenhouse environmental monitoring
and server room environmental control), real-time collection of temperature
and humidity data is only the first step. Reliably storing and analyzing this data
is equally important. Cloud-based solutions rely on networks and third-party
services, while local storage solutions are simpler, avoiding authentication and
complex API calls. However, traditional databases are complex to set up and

costly to maintain, necessitating a lightweight, straightforward storage method.
Background

CSV files represent a simple and widely adopted structured data storage
format that can be directly opened and processed by Excel, Numbers, and

Google Sheets. By integrating the runlinc (E32W) board with a Python Flask

© Copyright 2025 eLabtronics. All Rights Reserved
PAGE| 1

runlinc Intermediate Project 13: Temperature and Humidity Storage (E32W+Python Version)

server, real-time data acquisition, storage, and local persistence can be easily

achieved.

Ideas

The core concept involves using the runlinc board to collect real-time temperature
and humidity data from a DHT11 sensor. This data is then uploaded via HTTP POST
requests to a local Python server, which appends the data to a CSV file. This
approach builds a lightweight yet reliable data storage system.

Plan

We have a DHT11-temperature and humidity sensor in our kits which we can use
to

check the temperature and humidity around the sensor. We want to use the
DHT11 sensor

to monitor the temperature and humidity around the crops.

Temperature

DHT11-
temperature
and humidity

sensor

P MIRCROCHIP

Humidity

Figure 1: Block diagram of Microchip outputs
Use the DHT11 sensor to collect temperature and humidity data.
The runlinc board uploads data to the local server via HTTP POST every second.
The Python Flask server receives the data and writes it to a CSV file.

Users can open the CSV file in Excel/Google Sheets for subsequent analysis.

runlinc Background

runlinc is a web page inside a Wi-Fi chip. The programming is done inside the
browsers compare to programming inside a chip. The runlinc web page inside
the Wi-Fi chip will command the microchips to do sensing, control, data

logging Internet of Things (loT). It can predict and command.
© Copyright 2025 eLabtronics. All Rights Reserved
P AGE | 2

runlinc Intermediate Project 13: Temperature and Humidity Storage (E32W+Python Version)

Part A: Design the Circuit on runlinc

Note: Refer to runlinc Wi-Fi Setup Guide document to connect to runlinc

Upgrade your runlinc V1.2 to V2.0 with reference to the file ‘runlinc V2.0 Upgrade’.

Use the left side of the runlinc web page to construct an input/output (1/0).

For port D23 name it tempHumidSensor and set it as DHT11_IN.

In our circuit design, we will be using the DHT11-temperature and humidity sensor. We
happen to have this in our kits, so these can be used on our circuit design, as per the plan.

D19 | DISABLED s P]
D21 DISABLED s]

D22 | DISABLED s T)
D23 'DHT11_IN s | | | tempHumidSensor |
D25 | DISABLED s P]
D26 'DISABLED s) | |

Figure 2: 1/0 configurations connections

Part B: Build the Circuit

Use the STEMSEL E32W board to connect the hardware. For this project we are using both
the left and right I/O ports, with negative port (-ve) on the outer side, positive port (+ve) on

the middle and signal port (s) on the inner side (as shown below).

© Copyright 2025 eLabtronics. All Rights Reserved
PAGE | 3

runlinc Intermediate Project 13: Temperature and Humidity Storage (E32W+Python Version)

Figure 3: Negative, Positive and Signal port on the E32W board

There is one 1/O part we are using for this project, a DHT11-temperature and humidity
sensor, their respective pins are shown in the figure below.

{.\‘H;

Figure 4: 1/0 part with negative, positive and signal pins indicated

© Copyright 2025 eLabtronics. All Rights Reserved
PAGE | 4

runlinc Intermediate Project 13: Temperature and Humidity Storage (E32W+Python Version)

Wiring instructions

a) Plug in the DHT11-temperature and humidity sensor to i023 on the E32W board.

b) Make sure the (-ve) pin are on the GND (outer) side of the I/O ports.

Figure 5: Circuit board connection with 1/0O part (side view)

© Copyright 2025 eLabtronics. All Rights Reserved
PAGE| 5

runlinc Intermediate Project 13: Temperature and Humidity Storage (E32W+Python Version)

~ 0'TA MZCa 'I:Igl.l'j
[‘h

@

RREER

(]
[]
[
m
[
<1
[
[
1
=5

)
&k

2

u
(L]

3U3GNDDIS D2 D4 RX2TX2 D5 DI8 D18 B21RX] TXOD22D23
1 v ‘ Ll Kl . . 5 .

anin
)

Figure 6: Circuit board connection with 1/0 part (top view)

© Copyright 2025 eLabtronics. All Rights Reserved
PAGE| 6

runlinc Intermediate Project 13: Temperature and Humidity Storage (E32W+Python Version)

Temperature and Humidity Data Monitoring and

Storage

A. Run the Python Server
Python (Flask Server):

On the computer side, a Python Flask server receives the uploaded data.
When the runlinc board sends temperature and humidity readings, the server
writes each record into data.csv. If the file does not exist, it is created with
headers. This ensures that all sensor readings are logged locally and can be
opened directly in spreadsheet applications.

Save the following code as server.py on your computer (e.g., Desktop):

from flask import Flask, request, make response, jsonify

import csv, 0s

app = Flask(__name)
CSV_FILE = "data.csv"

os.path.exists(CSV _ FILE)'
with open(CSV_FILE, "w", newline="", encoding="ut{-8") as f:

writer = st.wutel(f)

writer.writerow(["timestamp", "temperature", "humidity"])

(@app.after_request
add_cors_headers(resp):
rcsp.hcadcrs[”Acccw Control-Allow-Origin"] = "*"
resp.headers["Access-Control-Allow-Headers"] = "Content-Type"
resp.headers["Access-Control-Allow-Methods"] = "POST, OPTIONS"
return resp
.
@app.route("/upload", methods=["POST", "OPTIONS"])
upload():
if request.method == "OPTIONS":
return ("", 204)

data = request.get _json(force= , silent=)

© Copyright 2025 eLabtronics. All Rights Reserved
PAGE | 7

runlinc Intermediate Project 13: Temperature and Humidity Storage (E32W+Python Version)

ts = data.get("timestamp")
t = data.get("temperature")

h = data.get("humidity")

if ts t
return jsonify({"ok": , "error": "missing fields"}), 400
-
with open(CSV_FILE, "a", newline="", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow([ts, t, h])

return jsonify({"ok":

" ",

if name ==" main _

app.run(host="0.0.0.0", port=5000)

Open a terminal in the same folder and run:

pip install flask
python server.py

The server will start, showing:

Running on http://127.0.0.1:5000
Running on http://192.168.1.24:5000

Use the 192.168.x.x address for runlinc.
B. Configure runlinc IDE
HTML.:

First, we created a simple web page that allows the user to configure the
Python server address via an input box. Then, it displays the current
temperature and humidity values on the page, using dark red for temperature
and blue for humidity. A status field is also included to indicate whether data
has been successfully uploaded.

<div style="max-width:900px;margin:0 auto;font-family:Arial,Helvetica,sans-serif">
<h2 style="color:#0b5bd3;margin-bottom:8px">Temperature & Humidity Logger —
CSV</h2>

© Copyright 2025 eLabtronics. All Rights Reserved
PAGE | 8

runlinc Intermediate Project 13: Temperature and Humidity Storage (E32W+Python Version)

<l-- Server address configuration: Replace <your computer IP> with your computer's IP
address on the same WiFi network -->
<label>Python Server Upload URL:</label>
<input id="serverUrl" type="text" style="width:100%"
value="http://<your computer IP>:5000/upload">
<small>Example: http://192.168.1.24:5000/upload</small>
<hr>
<div>
<div style="font-size:18px;color:#a40000" id="Temperature">Current Temperature: N/A
(°C)</div>
<div style="font-size:18px;color:#0044cc" id="Humidity">Current Humidity: N/A (%)</div>
<div style="font-size:14px;color:#666" id="Status">Status: idle</div>
</div>

<p style="margin-top:12px">
Explanation: Please setD23toDHT11 INin the left I/O area and name it
TempHumidSensor(consistent with code).
</p>
</div>

JavaScript:
Next, we used JavaScript to update the displayed values in real time and

to prepare the sensor data for transmission. The script packs the
timestamp, temperature, and humidity into JSON format, and then sends it
to the Python server using an HTTP POST request. The status field is
updated according to the result of the upload.

var currentTempHumidity;
/I Display current measurement values
function displayValues(temp, humi) {
document.getElementByld('Temperature').innerHTML =
"Current Temperature: " + temp + " °C";
document.getElementByld('"Humidity').innerHTML =
"Current Humidity: " + humi + " %";
}
/[POST data to the local Python server, and the server writes to CSV.
async function postToServer(payload) {
const url = document.getElementByld('serverUrl').value.trim();
if (lurl) return;
I/l Send request
const res = await fetch(url, {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify(payload)

© Copyright 2025 elLabtronics. All Rights Reserved
PAGE| 9

runlinc Intermediate Project 13: Temperature and Humidity Storage (E32W+Python Version)

Ok

return res.ok;
}
/I Update status bar
function setStatus(text) {

document.getElementByld('Status').innerText = "Status: " + text;

JavaScript Loop:

Finally, we set a one-second loop to continuously read the temperature and
humidity data from the DHT11 sensor. Each reading is displayed on the web
page and simultaneously sent to the Python server, where it is appended into
the CSV file for later analysis.

/l Read from DHT11
currentTempHumidity = DHT11_In(tempHumidSensor).split(",");
var currentTemp = parseFloat(currentTempHumidity[0]);
var currentHumidity = parseFloat(currentTempHumidity[1]);
if (lisNaN(currentTemp) && lisNaN(currentHumidity)) {
// Display on page
displayValues(currentTemp.toFixed(2), currentHumidity.toFixed(2));
I/l Assemble uploaded data (with timestamp)
const nowlSO = new Date().toLocaleString();
const data = {
timestamp: nowlSO,
temperature: Number(currentTemp.toFixed(2)),
humidity: Number(currentHumidity.toFixed(2))
¥
// Send to Python server
try {
setStatus("uploading...");
const ok = await postToServer(data);
setStatus(ok ? ("uploaded " + JSON.stringify(data)) : "upload failed");
} catch (e) {
setStatus("error: " + e);

}

/I 1-second interval
await mSec(1000);

© Copyright 2025 elLabtronics. All Rights Reserved
P AGE | 10

runlinc Intermediate Project 13: Temperature and Humidity Storage (E32W+Python Version)
How to find your ip address

On Windows, we can check the computer’s IP address directly from the Wi-Fi
connection information:

Click the Wi-Fi icon on the bottom right of the taskbar.

Right-click your connected Wi-Fi network = select Properties (or Status).
Scroll down to the Properties section.

Find the entry IPv4 address (usually in the format 192.168.x.x or 10.x.x.x).

P wnNpeE

For example: IPv4 address: 192.168.1.24

Q =ERS

PIZEH] Internet

= IP 58e:
TR bR
DNS BEsSRE A Ee:
PAEEH] Internet
SSID:
& b ML
PRl
HIiEFS:
S e Tk
AN RRRR A

| A

¢ EERLES

B PRISEIRER (F1E):

Fo T /)
HHBhTHAEE itk IPvé dihik:

1Pv6 BRARI:

IPv6 DNS fE525:

A=

Windows 5T .
| P4 HBHE
IPv4 DNS iEs328:
SPEEARHE(MAC):

=R Wi-Fi PSSR

Figure 7: How to find your ip address

Then enter the following in runlinc:

http://192.168.1.24:5000/upload

© Copyright 2025 eLabtronics. All Rights Reserved
P AGE | 11

runlinc Intermediate Project 13: Temperature and Humidity Storage (E32W+Python Version)

Expected Results

runlinc webpage displays current temperature and humidity values.
Every second, data is sent to the Python server and stored in data.csv.

* Running on all addresses (8.8.8.8)
* Running on hitp://127.8.8.1:5008

* Running on hitp://192.168.1.24:5000
Pless LTRL+L to qu1t

= [“fﬂug;ia 14:11:5] ”PO;T euploa HTTPel.

- [25/hug/2825 14:11:52] "POST fupload HTTP/1.1"
- [25/8ug/2025 14:11:53] "POST fupload HTTP/1.1"
- [25/Aug/2 14:1: "POST /fupload HTTP/1
24 - - [25/Aug/ 2025 14:11:55] "POST fupload HTTP/1.1"
Ps L:\Use|5a0184J~D esktop> []

Figure 8: Python server

data.csv grows line by line,which shows on figure 10:

2025/8/25 14:253 22 a1
2025/8/25 14:23 2z fid
2025/8/25 14:23 22 G4
2025/8/25 14:23 22 fid
2025/8/25 14:25 22 fid
2025/8/25 14:23 2z b4
2025/8/25 14:23 22 G4
2025/8/25 14:23 22 63

Figure 9: data.csv

The CSV file can be opened directly in Excel or Google Sheets for
analysis.

Notes

Ensure runlinc and the computer are connected to the same Wi-Fi
network.

Always use the 192.168.x.x IP (not 127.0.0.1) in runlinc.

To stop the server, press CTRL+C in the terminal.

Summary

This project provides a concise local temperature and humidity monitoring and
data storage solution. Compared to the cloud based Google Sheets version,

© Copyright 2025 elLabtronics. All Rights Reserved
P AGE | 12

runlinc Intermediate Project 13: Temperature and Humidity Storage (E32W+Python Version)

this solution eliminates API authentication and external dependencies, making
it more suitable for rapid deployment and local analysis in laboratories and
small environments.

© Copyright 2025 eLabtronics. All Rights Reserved
P AGE | 13

	Introduction
	Problem
	Background
	Ideas
	Plan
	runlinc Background

	Part A: Design the Circuit on runlinc
	Part B: Build the Circuit
	Wiring instructions

	Temperature and Humidity Data Monitoring and Stora
	A. Run the Python Server
	Python (Flask Server):
	B. Configure runlinc IDE
	Expected Results
	Notes

	Summary

